
“A Better Internet Is Possible” – ICT For The
Commons
0. Initial Notes
This text is not a comprehensive overview over either how digital information
and communication technologies (ICT) can support the commons, nor what
projects strive to do so. It is simply an effort to explicate some of the require-
ments of a ‘commonist internet’ as implied by a “Global Commoning System”
(GCS) in terms of its possible technical implementations as well as its ethical
considerations, while also making short assessments of software projects possi-
bly of interest to commoners. While it can be understood as an addition to the
project of the GCS as well as the discussion about a ‘commonist internet’ in
general, it is also critical of some approaches and projects previously advocated
for on this blog and by the GCS itself.

1. Goals & Requirements
The core aim of the GCS in its current form is, firstly, the pursuit of the ques-
tion of how digital ICT can support commoning, in order to, secondly, help
commoners working towards realising a utopian society that enables everyone
to live a good life. It is problem-focused insofar as it strives to alleviate problems
commoners have with currently dominant ICT, but it also tries to find ways of
implementing “patterns” of commons-based cooperation in ICT more generally
by relying on alternative socio-ecological infrastructures. Currently, projects
like Valueflows or the Institutional Grammar seem to be promising projects for
supporting the implementation of such patterns on the application level, but
this leaves out the equally necessary underlying infrastructure. Naturally, this
should be ‘commonist’ as well, but what specific requirements does such soft-
ware, or software for the GCS in general – if we leave the hardware part out for
a moment – have?

1.1. Designing for Usability

Most generally, ICT should be usable (as e.g. described in the ISO series 9241
“Ergonomics of human-system interaction”). The encyclopedists of Wikipedia
– in what I assume is an undisclosed reference to the paywalled ISO standard
9241-11 – define usable as “the capacity of a system to provide a condition for its
users to perform […] tasks safely, effectively, and efficiently while enjoying the
experience”. Professionally, adressing these user needs is also known as “UX”
(user experience) design. Notably, usability here also includes thinking about
the utility/usefulness as well as the accessibility of a given system. ICT for
the GCS – i.e. software for inter-, as well as transpersonal cooperation – should
be assessed based on its usability, with a critical view on its affordances for
intersectional usability. The aim of enabling “global” (or pluriversal) transper-
sonal cooperation – under conditions of imperial hegemony no less – requires
selecting user stories specific to the currently existing “global” (or pluriversal)
hierarchies (and thereby making fundamental architectural decisions in a certain
way), with the goal of making the resulting software usable for the “globally”
marginalized (and them being included in testing/development). In contrast,

1



the requirements and needs of intersectionally privileged users of the software
are correspondingly subordinate (although of course by no means irrelevant).
Following this design approach, I first list some ethical design principles that
should be followed by ICT in 1.2., and then describe some of the specific util-
ity ICT needs to provide by looking at user stories relevant for a ‘commonist
internet’ in 1.3..

1.2. Ethical Design Principles

While there are some great ressources collecting different ethical design ap-
proaches/paradigms more or less aligned with commonism out there, this text
tries to provide a short – and not necessarily complete – summary of what eth-
ical problems should be considered when developing and/or using ‘commonist’
ICT. In that sense, it is not a “manifesto for commonist ICT”, altough you are
certainly invited to think that way.

Put positively, ‘commonist’ ICT should be:

• resistant. Resistance against repression, e.g. via unjust censorship or
surveillance, is paramount in protecting vulnerable groups; especially
when working under conditions of war, totalitarianism or under state
authority in general.

• accessible. Accessibility should mean free access for everyone, but with a
design focus on intersectional access.

• sustainable. While a minimized ressource usage in combination with a
modular and extensible design improves repairability, “sustainable” also
means not doing things if they would require an unjustifiably large part
of the total ressources available (i.e. moving beyond the planetary/social
boundaries, e.g. by requiring new/expensive hardware).

In turn, ‘commonist’ ICT should not be:

• hierarchical. A common example of hierarchy in ICT is the client/server
paradigm. Alternatives to such centralized (or federated) systems are
often described as “distributed” or “peer-to-peer”.

• exploitative, abusive and/or oppressive: ICT should be designed specif-
ically against enabling abuse, exploitation and oppression. A common
example for doing so is the design of content recommendation algorithms
on platforms like Facebook, Instagram or YouTube.

• monetized. Money is a technology for enabling barter logic, which runs
contrary to the idea of a commons-based society. This may include other
units of account like reputation or ressource contributions, if they are used
as currency equivalents.

1.3. Technical Design Considerations

For purposes of brevity and to avoid complicated topics like insecure hardware,
this part focuses on explicating major parts of the capacity a ‘commonist inter-
net’ needs to provide access to, along with corresponding – albeit short – user
stories:

• networking/communication.

2



– An activist in Taiwan should be able to securely talk and collaborate
in real-time with an activist in the PRC.

– Neighbourhood resistance committees in Sudan should be able to
continue their collaboration after war parties shut down or destroy
cell towers and/or cable networks (or some billionaire denies them
access to his/her satellite communication network).

• storage (can be thought of as a ‘cloud’ in the sense that it is storage ‘on
other people’s computers’, but not the “cloud” that is the fragile network
of semi-centralized data centers – with the associated social and ecological
costs – mostly controlled by well-known capitalist corporations).

– A whistleblower in a US intelligence agency should be able to safely
store and share sensitive documents without exposing themselves.

– A queer writer in Ghana should be able to publish their work without
running the risk of unintentionally outing themselves.

• computing. While I am reluctant of including this here due to the –
in my opinion disproportionately high – potential for misuse1, I recog-
nize that the scheduled execution of code might be difficult to standard-
ize/implement otherwise (a common usecase for this is a bot moderating
a chatroom). The wish for “smart contract”-like functionality also repeat-
edly comes up in texts by theorists of the commons (cf. Helfrich & Bollier
2019; Meretz 2023).

Specific to a ‘commonist internet’ along the lines of the GCS is the capacity to
mediate needs and need satisfiers (and to facilitate the establishment of ‘pat-
terns’, rules or ‘recipes’ conducive to that end), which in practice means user
stories like the following:

• MAPA (most affected people and areas) climate justice activists should
be able to safely and effectively reach out to LAPA (least affected people
and areas) activists to receive support; even if the individuals or groups
concerned have no previous knowledge of each other.

• A care network should be able to safely offer help to patients ‘sans papiers’
and have reliable translation services either by human or by machine read-
ily available.

• Pregnant people should be able to seek/receive healthcare services, despite
criminalization or disinformation regarding possible treatments.

• Survivors of sexualized violence wanting to escape the threat of an abuser
should be able to seek/receive counseling and refuge.

Accomodating such use cases needs to be mediated with adversarial usage, like
that of a capitalist actor exploiting the offer of free storage to externalise costs
or the secret service of a nation-state trying to uncover dissidents.

2. Practices & Projects
The technical design considerations in 1.3. have already narrowed the scope of
this part of the text down to technologies of a similar function to what is often
summarized as “the internet”. Therefore, after a critique of this ‘internet’ in
2.1. and a short assessment of the current projects of interest listed on the GCS

1I think that allocating computational ressources should be left to the application layer as
much as possible; a successful example for this is the BOINC project.

3



website in 2.2., a list of projects generally compatible with the requirements
described in 1.2 and 1.3 will be provided in 2.3..

2.1. The internet is broken

The internet – at least in its current form and function – is failing commoners.
It is not only hierarchical in that it fundamentally relies on the client/server
paradigma; it is also not safe to use (at least without hacks on top, like using
the Tor network to try to bypass network censorship and surveillance). Last but
not least, while its architecture is generally modular and extensible, its resource
usage cannot be justified with the features that claim to require them (currently,
the “solution” for increased ressource usage is to just allocate the system more
ressources). Indeed, one might argue that the requirements explicated above
have little overlap with the initial design goals of the protocols that make up
the internet in the first place. This also maps to the “Performance Inequal-
ity Gap”: Ressource-hungry web applications, designed primarily for the rich,
white, cis and able-bodied US/EU consumer with the latest iPhone – stereotyp-
ically embodying the imperial mode of living –, are effectively making the web
inaccessible2 to the majority of humanity (of which ~33% were also still “offline”
in 2023). The supposed “solution” to this ethical crisis is to expand the imperial
mode of living, even though that is clearly unsustainable3.

2.2. Previous projects of interest

The problems described in 2.1. are mirrored by the ‘projects of interest’ listed
on the GCS website:

• ActivityPub. Most famously implemented by Mastodon – and now
Threads as well –, this protocol is used as an open interoperability
framework for applications running on federated servers. It is not
designed to solve the problems of the broken internet stack, with the
associated privacy – and possibly scalability – implications.

• Holochain. A P2P application framework that is monetized by design with
a “native, asset-backed, mutual-credit currency” called “HoloFuel” (right
now, the VC-backed company behind it sells “HoloToken”, a convertible
token that they say can later be exchanged for HoloFuel), which they
intend to use for allocating ressources inside the P2P network. Helfrich
and Bollier seemingly did not think of this as a problem, but a project
that wants to become to cloud hosting “what Airbnb was to hotels” does

2While as of 2024, over 95% of the world’s most visited websites fail to comply with the
the Web Content Accessibility Guidelines (WCAG) as well, ‘accessibility’ is used in a broader
sense here.

3Sadly, even projects striving towards a better internet continue to rely on technologies like
Javascript/Typescript and the internet stack as a whole, with all the associated drawbacks.
While “easy” programming languages like Javascript and Python are considered as having
a low barrier of entry for new developers, they also come with a disproportionately higher
ressource consumption. While having comparatively higher barriers of entry, languages such
as C/C++, Pascal, Rust, Fortran, Go and Ada can be hugely more ressource efficient; with
Rust, Go and Ada also coming with increased memory safety affordances. A project’s choice
of a certain programming language, therefore, (or at least the availability of implementations
in languages other than Javascript) should be a part of evaluating the respective project in
its usefulness for building a ‘commonist internet’ complying with ressource constraints.

4



not seem like a great fit for the values of the GCS, despite the nice things
built on top of it.

• Solid. A protocol for selfhosting data (which can also be combined with
ActivityPub) that continues to rely on the client/server paradigm and that
does not adress the flaws of the underlying internet stack.

• Attributable. With Attributable building on the Matrix protocol and Ma-
trix on the road to a hybrid P2P network (altough this seems to be
currently on-hold due to funding issues), this is a somewhat hacky4 but
generally interesting project working along the same lines as Solid. ->
Introduction (in German)

Other, similar projects not listed on the GCS website include PubHubs and
SemApps, which also build on the technologies listed above; i.e. Matrix, Solid
and/or ActivityPub. Because of this, they are generally federated (as opposed
to peer-to-peer/distributed) and build on the broken internet stack. There
are many (!) other “blockchain”-based projects supposedly trying to build a
“better internet” as well, nearly all of which are monetized in some way. An
example for this is “The Open Network” (TON), which is used by Telegram;
with complementary – i.e. separable – monetization schemes like IPFS/$FIL
being the exception rather than the norm (users of IPFS include notable shadow
libraries like Anna’s Archive and Library Genesis).

2.3. An ‘internet for the commons’?

Instead of the projects assessed in 2.2. (possibly with the exception of At-
tributable), better approaches to an ‘internet for the commons’ can be found in
the following list5:

• GNUnet
– developed by GNUnet e.V.
– funding via NLnet
– launched in 2001
– lots of research about it

• Veilid
– developed by Veilid Foundation Inc
– went public in 2023
– commitment towards non-monetization and accessibility
– mobile-friendly application framework (Flutter)

• p2panda
– funding via NLnet
– nice collaboration project with the Meli Bees Network
– mobile-friendly application framework planned (Flutter)

Other interesting, but less complete projects:

• Willow/Earthstar
4This may be somewhat of an understatement, given the huge overhead it adds to the stack,

its total dependency on the development progress of Matrix and the way the people behind it
seem to implement it in Javascript.

5Please note that a listing here does not indicate total compliance with the ethical design
principles described in 1.2. – as such an assessment would require significantly more technical
insight and research – but only a general alignment.

5



– focused on storage
• Spritely

– focused on computing

More information about the selection of the projects for this list can be found
here.

6


